Genetic Relationships of Elwha River
Oncorhynchus mykiss to
Hatchery-Origin Rainbow Trout
and Washington Steelhead

Washington Department of Fish & Wildlife

U.S. Fish and Wildlife Service

August 2001




Genetic Relationships of Elwha River Oncorhynchus mykiss to

Hatchery-Origin Rainbow Trout

and Washington Steelhead

Prepared for the

National Park Service
Olympic National Park
Port Angeles, Washington

by
Stevan R. Phelps!

Washington Department of Fish and Wildlife
600 Capitol Way North
Olympia, Washington 98501

Joseph M. Hiss and Roger J. Peters

U. S. Fish and Wildlife Service
Western Washington Office
Division of Fisheries and Watershed Assessment
Lacey, Washington 98503-1263

August 2001

"Deceased




Abstract

We used allozyme electrophoresis to determine the ancestry of rainbow trout, Oncorhynchus
mykiss, from seven locations in the Elwha River Basin. O. mykiss in these areas have been
isolated from anadromous steelhead since the early 1900's by two mainstem dams. Elwha River
rainbow trout, the resident form of O. mykiss, may be descendants of native rainbow trout, native
steelhead, or these fish may be derived from the numerous plants of hatchery-origin rainbow
trout and cutthroat trout, O. clarki, that have occurred in the Elwha River. The pending removal
of both dams will re-establish anadromous fish access to the watershed. The current anadromous
fish restoration strategy recommends that hatchery-reared juvenile salmonids be released into the
tiver upstream of the dams to accelerate re-colonization of these habitats. This strategy requires
the identification of viable broodstock sources. We compared the genetic profiles of O. mykiss
from seven collection sites within the Elwha River Basin to allozyme characteristics of hatchery-
origin rainbow trout strains, hatchery and natural populations of Washington steelhead, and
cutthroat trout subspecies, to help guide decisions on anadromous fish restoration. Native
Washington O. mykiss and hatchery-origin rainbow trout can be differentiated using allozymes
because the commonly used hatchery rainbow trout strains originated from California. These
rainbow trout strains contain genetic variation that has not been identified in native Washington
steelhead populations. Cutthroat trout subspecies also contain distinct genetic variation.

Evidence of successful natural reproduction by hatchery-origin rainbow trout was observed in all
collections except the one from the South Fork Little River (a lower Elwha River tributary).
Estimates of alleles derived from hatchery rainbow trout were 0% in the South Fork Little River
collection, less than 5% in the upper Elwha River, and 5% - 20% in the remaining sampling
locations. It appears that the hatchery rainbow trout gene pool has mixed with the native O.
mykiss in many areas based on the distribution of alleles. Cutthroat trout and rainbow x cutthroat
hybrids were rare.

The genetic attributes of all the O. mykiss collections in the Elwha River were significantly
different from both hatchery and natural populations of Washington steelhead. Based on genetic
distance relationships, all the collections, except for the South Fork Little River, clustered
together. The O. mykiss population from the South Fork Little River was most closely related to
Washington steelhead collections. But, the fish from this location had the lowest levels of
genetic variation.

The South Fork Little River O. mykiss population should be examined further to determine if its
life history pattern supports genetic evidence that this population represents landlocked
descendants of native Elwha River steelhead. Additional locations, especially the upper
watershed and other tributaries, should be examined to determine if additional broodstock
sources are available to increase the overall genetic diversity of the broodstock. This is
important due to the apparent reproductive isolation observed in this study.
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INTRODUCTION

The Elwha River, which has its headwaters in the Olympic National Park and flows into central
Strait of Juan de Fuca, was a major salmon (Oncorhynchus spp.) and steelhead (O. mykiss)
producer in this region of Washington. Dams at river kilometer (Rkm) 9 and 21 have blocked all
upstream fish migration since 1914. Now these dams may be removed and access for
anadromous fish to a large portion of the watershed restored. The Elwha River Ecosystem and
Fisheries Restoration Act (Public Law 102-495; section 3(d)) of 1992 established the goal of full
restoration of the Elwha River's ecosystem and native anadromous fish runs. As part of the
anadromous fish restoration in the Elwha River, Federal, State, and Tribal fishery agencies are
considering plans to accelerate re-colonization by releasing hatchery-reared juvenile salmonids
into the river upstream of the existing dam sites for 8 to 10 years after safe fish passage is
assured (Wunderlich et al. 1994). One requirement of this restoration strategy is the
identification of the best sources of salmonid broodstocks.

Steelhead are a candidate species for hatchery-assisted restoration in the Elwha River
(Wunderlich et al. 1994). The non-anadromous (resident) form of this species, rainbow trout, in
the Elwha River may be descendants of native steclhead and could be used as broodstock for
restoration. Rainbow trout from the upper Elwha River (upstream of Rkm 32) may represent
native Elwha River steelhead (Reisenbichler and Phelps 1989). However, limited numbers of
upper Elwha rainbow trout, combined with difficult logistics for fish capture, make broodstock
collection in this area very difficult. The presence of downstream migrants approximately 1 km
downstream of Glines Canyon Dam (Figure 1) which appear to be smolting and are adaptable to
saltwater (Winchell 1991; Hiss and Wunderlich 1994), provides an opportunity to capture fish in
relatively accessible lower and middle Elwha River locations. These fish could be reared in
captivity and used as broodstock upen maturing. But, there are potential problems with using
these fish as broodstock because non-local hatchery-origin rainbow trout and non-local cutthroat
trout, O. clarki, subspecies have been stocked in the Elwha River. In addition, resident forms of
native coastal cutthroat trout are found above the dams. All of these fish are known to interbreed
and produce viable progeny. This raised concerns that lower and middle Elwha River trout may
not represent native Elwha River steclhead.

Hatchery-origin rainbow trout were stocked into waters containing wild populations based on the
assumption that it would enhance recreational fisheries. Incomplete stocking records that we
obtained indicate that the Elwha River was routinely planted with rainbow trout from numerous
Federal hatcheries and the State of Washington’s Goldendale Hatchery for many years. These
plants into the Elwha River have now ceased. The ancestry of rainbow trout strains from most of
the Federal hatcheries (Busack and Gall 1980; Dollar and Katz 1964) and all four of the
Washington Department of Fish and Wildlife (WDFW) State hatcheries (Crawford 1979) can be
traced to the McCloud River in California.

These California-origin hatchery rainbow trout strains have characteristic alleles (Busack et al.
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1979; Milner et al. 1979; Kincaid 1980) that have not been found in native rainbow trout and
steelhead populations in Washington (Phelps 1993; Phelps et al. 1994). The presence of these
alleles in the current Elwha River Basin rainbow trout populations would be an indication of
successful natural reproduction of stocked hatchery rainbow trout. Thus, these alleles can be
used to determine if the present rainbow trout populations were derived primarily from native
rainbow trout and/or residual steelhead, the offspring of hatchery-origin rainbow trout and/or
cutthroat trout, or a mixture of hatchery and native fish. We refer to allelic markers that are
characteristic of California-origin rainbow trout hatchery strains as “hatchery alleles”. However,
this does not indicate that they originated as part of fish culture or are the result of domestication
selection, although their frequencies may have changed substantially over the years as a result of
hatchery propagation.

Few studies have examined the genetic contribution of hatchery-origin trout to wild populations.
Reisenbichler and Phelps (1989) determined that a single collection of rainbow trout from the
upper Elwha River was more similar to Olympic Park steelhead than to several stocks of
hatchery rainbow trout. Campton and Johnson (1985) found evidence of interbreeding between
wild and hatchery trout in the Yakima River. Further work by Phelps (1993) and Phelps and
Baker (1994) indicated that the amount of interbreeding was quite variable among different
locations in the Yakima River. In the upper river and tributaries above Cle Elum, the
introgression was low, but in the mainstem and tributaries near Ellensburg, over half the gene
pool was estimated to be hatchery derived. Taggart and Ferguson (1986) also found
introgression of hatchery and native brown trout (Salmo trutta) stocks in Northern Ireland after
15 years of supplemental stocking. The percentage of hatchery-origin genetic contribution varied
widely from river to river (19%-91%). However, Marnell et al. (1987) found native populations
of westslope cutthroat trout (O. clarki lewisi) in lakes within Glacier National Park, Montana,
after the stocking of rainbow trout and Yellowstone cutthroat trout (O. clarki bouveri) into these
waters. In addition, Currens (1987) and Currens et al. (1990) found little evidence of nonnative
hatchery genes in stocked rainbow trout populations in the Deschutes River, Oregon.

There have been few direct comparisons of known rainbow trout populations to known steelhead
populations from the same locations in Washington. Typically, the portions of streams in western
Washington that have access to marine waters have had relatively few resident rainbow trout
compared to the anadromous steelhead. However, WDFW biologists have identified locations
where both resident and anadromous fish were thought to occur. Contradictory results have been
obtained from these limited comparisons. Phelps et al. {1997) found evidence of genetic
isolation in juveniles (n = 15) from the Hamma Hamma River classified as anadromous and
resident based on otolith strontium levels. In contrast, Berejikian et al. (2001) found no evidence
of genetic isolation of resident and anadromous fish from the Hamma Hamma River below an
anadromous barricr. However, resident fish above the barrier were distinct from resident and
anadromous fish below the barrier (Berejikian et al. 2001). Resident and anadromous fish within
the Yakima River Basin were not distinct (Phelps et al. 2000). One hypothesis explaining the
lack of genetic divergence in sympatric resident and anadromous populations of O. mykiss, is that
anadromy and residency is just natural variation within a population, similar to different ages of
maturation or return timing.




The three general objectives of this study were to:

1) Determine the level of genetic similarity among O. mykiss collections from the Elwha River.
The null hypothesis is that there is no difference in the allozyme characteristics among O. mykiss
from the seven collection areas. We did this test to determine whether or not broodstock for
anadromous fish restoration could be taken from throughout the Elwha River. Access to much of
the watershed is difficult because of the terrain.

2) Estimate the contribution of hatchery-origin rainbow trout or cutthroat trout to the present O.
mykiss gene pools at each collection location. The null hypothesis is that the allelic composition
of Elwha River rainbow trout collections are not different from the allelic composition of the
four Washington hatchery rainbow trout strains. The degree of similarity to hatchery rainbow
trout can be estimated by the ratio of specific alleles that are characteristic of hatchery rainbow
trout used in Washington. We also wanted to determine if cutthroat trout have interbred with the
rainbow trout and to exclude such fish from the analyses.

3) Determine the genetic similarity of Elwha River . mykiss collections to naturally-produced
and hatchery winter-run and summer-run Olympic drainage steelhead populations. The null
hypotheses are that the genetic characteristics of the Elwha River collections do not differ
significantly from naturally produced steelhead collected from Olympic Peninsula and coastal
Washington streams, and from hatchery steelhead strains used for many years by WDFW. We
performed these tests to help guide the determination of broodstock sources that may be suitable
for steclhead restoration. In addition to genetic distance, we compared the levels of genetic
variation found in the Elwha River O. mykiss to levels found in wild and hatchery steelhead
collections.

METHODS

O. mykiss were collected from seven general locations in the Elwha River Basin (Figure 1).
Samples from several sites within each general location were combined into one “collection”.
Collections were obtained from one location in the Elwha River Basin in 1993 and five locations
in 1994 (Figure 1). Data for one collection from a previous study in 1983 were also used in some
analyses. Rainbow trout (n=50) from the previous study (1983) came from a collection in the
upper Elwha River (upper Elwha River in this report refers to the area above Lake Mills) near the
Hayes River and Godkin Creek in 1983 (Figure 1) (Reisenbichler and Phelps 1989). Resident
fish were collected in the Little River mainstem (n=14), Indian Creek (n=36), South Fork Little
River (n=50), and Lake Mills (n=55) and smolts were captured below Glines Canyon Dam
(n=20) in 1994. Sampling methods and locations have been discussed in detail by Hiss and
Wunderlich (1994). The 1993 collection (n=60) was from the upper mainstem Elwha River near
Press Valley (by J. Meyer, Olympic National Park). Steelhead data were from Phelps et al.
(1994) and unpublished WDFW records. There have been no other wild rainbow trout
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collections in western Washington that could be used for comparisons. Hatchery rainbow trout
data came from Reisenbichler and Phelps (1989) and Phelps (1993).

Muscle, heart, eye, and liver were dissected from each fish and electrophoresis was performed
following the methods of Aebersold et al. (1987) and Phelps et al. (1994). The electrophoretic
protocol, enzymes screened, and alleles observed during this study and other studies on rainbow
trout and steelhead by WDFW are listed in Phelps et al. (1994). Genetic nomenclature follows
the conventions of Shaklee et al. (1990), and laboratory data management was described by
Shaklee and Phelps (1990). Each fish was assayed for genetic variation at 92 loci. Fifty-six of
these loci were chosen for the analysis based on enzyme activity, resolution, and the presence of
genetic variation in Washington steelhead and hatchery-origin rainbow trout.

All O. mykiss collected in 1994 from the Elwha River were aged to determine if different year
classes contributed to the fish collections. Scales were scraped off the dorsal side of the trout
using a blunt knife and placed on scale cards for pressing at a later date. Scales were pressed on
a slide using a hydraulic press and aged using standard methods (Jearld 1983).

Data Analysis

Allelic data from electrophoretic assays are typically evaluated and analyzed in a variety of ways
to meet specific study objectives. A detailed description of the specific steps, rationale, and
assumptions used in these analyses was presented by Phelps et al. (1994). Data analyses for this
study focused on genetic similarities of collections and, identification and estimation of the
presence and magnitude of hatchery-origin alleles. For fuller treatment of genetic analyses
applicable to fisheries management in general, see Ryman and Utter (1987) and Whitmore
(1990).

We tested the genetic similarity among O. mykiss collections from the Elwha River using the G-
statistic. We tested the null hypothesis that the allele frequencies at variable loci in two
collections were no different from what would be expected from two samples from a single
random mating population (of the same sample size as the collections being compared). All
possible pairs of collections were tested with two different numbers of loci. The 1993 and 1994
collections were compared at the 35 variable loci identified in this study. These recent
collections were compared to the 1983 collection of Reisenbichler and Phelps (1989) at 18 loci
(these 18 loci were variable in at least one population and in common between both studies).
These multiple paired tests were not corrected using the Bonferroni correction.

We estimated the contribution of past hatchery rainbow trout plants to the present O. mykiss gene
pools for each collection from the Elwha River, by comparing the frequency of specific alleles at
five loci, to the frequencies from a composite of WDFW rainbow trout strains. Data from

numerous Washington steelhead collections and from Oregon (Currens 1987) suggest that alleles
at the following five loci were derived from California-origin hatchery rainbow trout: 4DA4-1*85
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(0.80), CK-A1*67(0.06), mIDHP-2*144(0.37), LDH-C*95(0.10), PGM-2*85(0.04). The allele
frequencies used for the comparison are in parentheses following the locus name. We presumed
that these alleles did not occur in the Elwha River prior to the stocking of hatchery rainbow trout
(frequency = 0.00). Although there was heterogeneity among the hatchery strains, we chose to
make a composite of hatchery rainbow trout genetic characteristics as a representative hatchery
strain for the estimation of hatchery introgression. We did this because a variety of different
rainbow trout strains of California origin have been planted into the Elwha River (USFWS,
unpublished data). Other alleles that are common in hatchery rainbow trout of California origin
are CK-CI1*103, bGLUA*77, bGLUA*85, sIDHP-2*123, and sMDH-B1,2*85. The frequencies
of these alleles vary substantially among hatchery strains due to the long-term culture of these
fish. Therefore, these alleles were not used in the estimation of hatchery introgression.

Various computer programs were used to analyze the electrophoretic data for this study.
BIOSYS-1 (Swofford and Selander 1981) was used to calculate allele frequencies, average
heterozygosities, percentages of polymorphic loci, average number of alleles per locus, genetic
distances, and heterogeneity chi-square tests of allele counts. A program that performs log-
likelihood ratio tests (G-statistic) (Sokal and Rohlf 1981), written by Craig Busack (WDFW),
was used to test for significant differences in allele frequencies between pairs of collections.
NTSYS-PC (Rohlf 1992) was used to graphically represent some of the genetic distance
relationships. We used the genetic chord distance measure of Cavalli-Sforza and Edwards
(1967) and Nei's unbiased genetic distance (Nei 1978) to generate dendrograms (using the
unweighted pair-group method with arithmetic averaging, UPGMA) and multidimensional
scaling diagrams (Rohlf 1992) to illustrate relationships among collections. Examination of
collections for gametic disequilibrium was conducted using a program (PANMIX) written by
Don Campton (University of Florida/USFWS). Many of the above programs were modified by
Craig Busack and Chris Marlowe (both of WDFW) to accept data input in a standardized format,
and to provide improved output formats. ‘

RESULTS

All the allelic variation observed in the Elwha River collections has been found in other
steelhead and rainbow trout populations, and cutthroat trout subspecies (i.e., no unique alleles
were identified in this study). The following loci did not express any electrophoretically
detectable variation in the collections from the Elwha River: sAAT: -3, mAH-1; mAH-2; mAH-3;
CK-A41; CK-A2; GAPDH-3; GPI-A; GPI-BI; GPI-B2; IDDH-1; mIDHP-1; LDH-A1; LDH-BI:
SMDH-A1,2; MPI: PGM-1; PGM-1r; PNP; mSOD.

Three individual fish in this study were judged to be cutthroat trout or cutthroat x rainbow
hybrids based on the presence of cutthroat trout-specific alleles (Leary et al. 1987; Phelps,
unpublished data). Two fish were dropped from the Indian Creek collection and one fish from
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the Lake Mills collection because cutthroat trout alleles were found at a frequency > 50% (fish
94BX13 was a pure westslope cutthroat trout, fish 94BX31 was a cutthroat trout hybrid, and fish
94BY39 was a hybrid coastal cutthroat trout). No other cutthroat trout were observed in any of
the other collections.

Similarity Within Elwha River Collections

A majority of pair-wise comparisons of allele frequencies were significantly different, even
though the sample sizes were small (Table 1). The paired combinations of Indian Creek with the
mainstem Little River and Glines Canyon Smolts were not significantly different from each other
using 18 and 35 loci. The mainstem Little River and Glines Canyon smolts were not
significantly different from each other using 35 loci, but were marginally different using 18 loci
(0.01 <P <0.05). The Lake Mills collection was not significantly different from the Glines
Canyon smolts at the 18 loci, but was marginally different (0.01 < P < 0.05) using 35 loci. The
1993 upper Elwha River collection and the South Fork Little River were significantly different
from all other collections (P < 0.001). The only collection not different at the P < 0.001 level
with the 1983 collection was the Glines Canyon smolts. These results indicate that there is
reproductive isolation between some O. mykiss populations within the Elwha River and
tributaries.

We illustrated the genetic distance relationships of Elwha River rainbow trout collections to each
other using a dendrogram (Figure 2). The South Fork Little River was an outlier relative to the
other populations. The 1983 and 1993 upper river collections grouped with one another before
grouping with any of the lower river populations. A close relationship of Indian Creek with the
Little River mainstem was also observed.

Similarity to Hatchery Strains

All the O. mykiss collections from the Elwha River were significantly different (P < 0.0001)
from WDFW hatchey rainbow trout strains. However, alleles characteristic of hatchery-origin
rainbow trout were observed at some locations. We found evidence of successful breeding of
hatchery rainbow trout in all collections except the South Fork Little River. The absence of
hatchery-origin rainbow trout alleles is one explanation for why O. mykiss collections from the
South Fork Little River had the largest genetic distances compared to the other Elwha River
collections (Figure 2). The estimated percent of alleles derived from hatchery rainbow trout was
less than 5% in the upper Elwha River (1993), and between 5% - 20% in the other locations.

The identification of alleles characteristic of hatchery rainbow trout in collections could be due to
the presence of a few pure hatchery fish in a collection of pure wild fish; or it could indicate that
interbreeding has occurred (introgression). It’s important to determine which of these two
possibilities resulted in the presence of hatchery alleles in our samples. If the gene pools have
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remained distinct, then pure wild fish could be sorted out from the hatchery fish for broodstock
collection. The characteristic hatchery rainbow trout alleles would be randomly mixed
throughout the sample of fish in the collections if hatchery and wild fish have been interbreeding
for many generations. If there has been reproductive isolation between hatchery-origin and
native fish, the hatchery-origin alleles would tend to be associated with one another, and
conversely, native alleles would be associated with other native alleles. In this latter case, there
would tend to be a deficit of heterozygotes compared to the expected Hardy-Weinberg genotype
proportions, and significant gametic disequilibrium would be present. We used these two
measures to determine if we could detect nonrandom mating. We used loci that had at least five
variable alleles (excluding the isoloci) for the Hardy-Weinberg genotype equilibrium tests. Two
loci out of the 48 tests were significantly different at the 0.05 criterion level, which is about what
would be expected by chance. We also could not detect any gametic disequilibrium in any of the
six collections. Thus, the evidence suggests that the hatchery rainbow trout gene pool has mixed
with the native fish.

The mean number of alleles per locus, the proportion of loci that are polymorphic in each
collection at the 0.01 and 0.05 criteria, and two measures of heterozygosity based on 56 loci for
each collection and selected Washington steelhead collections are presented in Table 2. The two
locations with the least hatchery rainbow trout hybridization (S. Fork Little River and upper
Elwha River 1993) also had the lowest genetic variability based on percentage of loci
polymorphic at the 0.05 criterion level and mean heterozygosity, when compared to other Elwha
River collections. These two sites were also among the lowest when compared to other
Washington steelhead populations (Collections 7-30; Table 2).

Similarity to Other Olympic Steelhead

The overall allele frequencies of all the Elwha River O. mykiss collections were significantly
different from both hatchery and wild steelhead collections from coastal Washington based on
paired G-tests. We used a UPGMA dendrogram (Figure 3) to display the genetic distance
relationships among the Elwha River Q. mykiss and some selected Washington steelhead
populations. We used 56 loci and the unbiased genetic distance measure of Nei (1978) (these
loci are a standard subset of the coast wide steelhead data set). On the dendrogram, the South
Fork Little River collection was most closely related to that from the East Fork Humptulips
River, and grouped with most other steelhead populations before clustering with the other Elwha
River populations.

The genetic distances between the South Fork Little River and wild winter-run steelhead
collections in many cases were smaller than the distances to the Chambers Creek (0.0030) and
Bogachiel (0.0054) hatchery winter-run steelhead. Some examples of genetic distance between
the South Fork Little River collection and wild winter-run steelhead were: East fork Humptulips
(0.0008), North River (0.0011), Humptulips (0.0014), Calawah (0.0016), and Nemah (0.0016).
Genetic distances to several other Strait of Juan de Fuca streams were: Hoko (0.0019), Morse
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(0.0023), Pysht (0.0024), and Dungeness (0.0029). However, some WDFW biologists suspect
that these Strait of Juan de Fuca streams have had some successful natural production of
Chambers Creek-origin winter-run steelhead (Phelps 1997).

The other Elwha River collections were more closely related to each other than to the bulk of
Washington steelhead populations. The 1983 collection from the upper Elwha River was
dropped from this genetic distance analysis because we wanted to use the larger locus data set.
A similar pattern occurred on the multidimensional scaling plot (Figure 4). The South Fork
Little River (4SFKLit) fell among the Washington steelhead collections and the Glines Canyon
smolts were intermediate between Washington steelhead and the other Elwha River collections.

Age Structure of Elwha River Collections

The number of fish from each age class in the 1994 collections varied among sites {Table 3). At
least two age-classes were represented in all collections except those from Glines Canyon, in
which only 2-year-old fish were observed. Rainbow trout sampled from Lake Mills had the
greatest range of ages, with age classes from 1+ to 5+ represented. Indian Creek, the mainstem
of Little River, and South Fork Little River had only 1+ and 2+ year-old fish represented in the
sample. The average size of fish from different age classes and different sampling locations is
presented in Figure 5.

DISCUSSION

Since the first dam on the Elwha River was constructed in 1910, steelhead have been prevented
from ascending into the areas where we collected rainbow trout. Reisenbichler and Phelps
(1989) listed three possibilities for the origin of the present populations of rainbow trout in the
Elwha River. The first possibility was that they developed from native rainbow trout and/or
steelhead, and that the present allele frequencies developed from genetic drift and natural
selection. The second possibility was that they descended from only hatchery rainbow trout.
The final possibility was that a landlocked steelhead population developed but subsequently has
interbred with hatchery rainbow trout.

In five of the locations where we collected rainbow trout, hatchery rainbow trout apparently have
had limited success at reproducing in the wild, but have interbred with native Elwha River O.
mykiss. We found no evidence of hatchery rainbow trout origin genes in the collection from the
South Fork Little River. This population was also more similar to Olympic steelhead than to
hatchery steelhead. However, this population has less genetic variation than other Elwha O.
mykiss, and wild and hatchery steelhead. This is most likely the result of genetic drift due to
small numbers of breeding adults over time.




The apparent similarity to Olympic steelhead and lack of characteristic hatchery-origin rainbow
trout alleles suggest that the South Fork Little River could potentially represent native Elwha
steelhead. However, electrophoretic information from this analysis is based on only two age-
classes (1+ and 2+). Reisenbichler and Phelps (1989) observed significant variation in allele
frequencies among different year-classes of native Olympic steelhead, suggesting that several
year-classes of fish should be used for genetic characterization studies. Although only two age-
classes are represented in this analysis, the lack of hatchery alleles in both age-classes suggests
that hatchery rainbow trout have not interbred with this population.

O. mykiss from the South Fork Little River could potentially represent native Elwha steelhead
and it is suggested that further investigations be completed for this population. The goal of any
broodstock program would be to use a stock most likely to succeed in the environment into
which their progeny will be planted. A native brood population is advantageous because it has
persisted and evolved within the drainage. However, genetic changes may have occurred in this
population, since the population has persisted without the marine phase of its life history. This
may limit their usefulness as a brood source, if these changes impact the population’s ability to
survive the marine phase of its life history. Life history investigations should be completed to
determine if this population provides a viable brood source, especially given the observation that
the genetic variation observed in Q. mykiss from the South Fork Little River collection was the
lowest observed during this study. These studies should include the examination of emigration
behavior (smolt migration) and adaptability to seawater.

The lack of older age-classes in the South Fork Little River collection could be caused by
movement of older fish into larger streams or lakes (Peven ct al. 1994; Pearsons et al. 1994) or
emigration of smolts. Downstream migrants (smolts) caught in a scoop trap located in Glines
Canyon were all age 2+ and were adaptable to scawater (Hiss and Wunderlich 1994). These
smolts were larger than the age 2+ fish present in the South Fork Little River, suggesting that age
2+ fish present in the South Fork Little River may not have obtained sufficient size for
smoltification during the previous spring. There is currently inadequate information to determine
if smoltification or lack of habitat for older (larger fish) age-classes is responsible for the lack of
older age-classes in this system. The presence of only 1+ and 2+ age-classes in the mainstem
Little River and Indian Creek and older (3-5) age-classes in Lake Mills supports both theories.
Some smolts may residualize in the reservoirs rather than completing their migration to sea
(Dilley and Wunderlich 1987; Wunderlich et al. 1989). However, limited instream habitat for
older and larger non-anadromous fish may also cause older-age classes to be present in Lake
Mills and younger-age classes to be present in the tributaries. Downstream migrant data and
subsequent salt water challenge information for emigrants are required to determine the factors
responsible for only 1+ and 2+ year-old fish present in the South Fork Little River collection.

The South Fork Little River would be a relatively good location for broodstock collection; if
further studies determine that the fish from this area have suitable life-history characteristics
(¢.g., ability to adapt to saltwater). This stream had one of the highest catch rates of the five
1994 sampling locations and access is relatively good compared to other locations in the Elwha

9




River basin. Estimates of population size would be required to determine the best approach for
broodstock collection (i.e., eyed-egg, presmolt, smolt, or adult).

Many options exist for restoration of naturally-produced, self-sustaining steelhead in the Elwha
River. The use of resident rainbow trout may increase the likelihood of successful restoration.

In contrast, adaptation to a resident life history for many years may have diminished the ability to
become a successful anadromous population. The identification of a location in the Elwha River
Basin that appears to have O. mykiss similar to wild populations of western Washington
steelhead was the first step to determining if viable broodstock sources are available for
restoration.
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Table 2. Genetic variability within steelhead and rainbow trout collections, measured at

56 loci.
Mean hetererozygosity
Collection' Mean No.  Percentage Percentage  Direct count Hardy-
of alleles of loci of loci Weinberg
per locus  polymorphic  polymorphic expected
at 0.01 level  at 0.05 level
Elwha River Rainhow Trout
1. UPElwha93 1.5 32.1 12.5 0.050 0.053
2. IndianCR94 1.7 429 214 0.079 0.079
3. LkMills94 1.6 32.1 19.6 0.073 0.071
4. SFKLittleR94 1.3 26.8 12.5 0.046 0.051
5. LittleRMS94 1.4 232 19.6 0.082 0.078
6. GlinesCan94 1.6 35.7 16.1 0.067 0.070
Steelhead
7. Skamania FH 93WR 1.5 375 16.1 0.063 0.064
8. Chambers Cr FH 93WR 1.7 51.8 19.6 0.078 0.079
9. Bogachiel FH 93WR 1.6 44.6 214 0.081 0.080
10. Skamania FH 94SR 1.5 41.1 19.6 0.069 0.067
11. Hoko R 94 1.7 429 17.9 0.072 0.076
12. Dungeness R 94 L5 375 19.6 0.066 0.068
13. Skokomish R 94 1.5 41.1 16.1 0.075 0.068
14, Tahuya R 94 1.6 55.4 17.9 0.084 0.082
15. Sitkum R 94 1.6 429 16.1 0.069 0.072
16. Humptulips 94 1.7 53.6 19.6 0.078 0.080
17. Wynooche 94 1.6 41.1 16.1 0.075 0.072
18. Satsop 94 1.4 32.1 19.6 0.072 0.067
19. Naselle 94 1.5 357 17.9 0.066 0.071
17




Table 2. (Continued)

Mean hetererozygosity
Collection! Mean No.  Percentage Percentage  Direct count Hardy-
of alleles of loci of loci Weinberg
per locus  polymorphic  polymorphic expected
at 0.01 level  at 0.05 level

20. Nemah 94 1.4 35.7 14.3 0.070 0.066
21. Sol Duc 94 1.6 393 214 0.079 0.074
22. Bogachiel 94 1.7 44.6 25.0 0.089 0.088
23. Calawah 94 1.5 37.5 16.1 0.071 0.068
24. Dosewallips 94 1.6 35.7 17.9 0.074 0.073
25. Morse Cr 94 1.7 46.4 23.2 0.079 0.079
26. Pysht 94 1.5 37.5 19.6 0.078 0.079
27. EFHumptulips 94 1.5 35.7 214 0.065 0.074
28. WFHumptulips 94 1.4 39.3 19.6 0.071 0.074
29. North 94 1.6 429 19.6 0.075 0.074
30. Stillman 94 1.4 304 17.9 0.069 0.071
WDFW Hatchery Rainbow Trout

31. Spokane FH 90 1.5 35.7 19.6 0.094 0.085
32. Goldendale FH 90 1.4 304 23.2 0.087 0.084
33. S Tacoma FH 90 1.4 32.1 232 0.095 0.093
34. Tokul CR FH 90 1.2 214 17.9 0.076 0.074

'Number next to collection site is used in Appendix A to reference collection numbers to collection

locations.
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Table 3. Numbers of rainbow trout sampled from each age class in the 1994 collections.

Age Classes
Location 1 2 3 4 5
Glines Canyon 0 22 0 0 0
Indian Creek! 12 17 3 0 0
Lake Mills? 2 27 16 5 2
Little River 6 7 0 0 0
S.F. Little River 41 6 0 0 0

'Age of two additional fish not determined. They appear to be 3 year olds based on size.

*Age of three additional fish not determined. Based on size they appear to be 2 (one), 3 (one),

and 5 (

one) years old.
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Figure 1. Location where rainbow trout genetic samples were collected in the Elwha

River Basin (modified from Wunderlich et al. 1994).
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Genetic Distance
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Figure 3. UPGMA dendrogram of Nei’s unbiased genetic distance (1978) among six O.

mykiss collections from the Elwha River (*) and 24 steelhead collections from Washington based

on 56 loci.
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Figure 4. Two dimensional multidimensional scaling plot of Nei’s (1978) genetic
distance among O. mykiss collections from the Elwha River and steelhead collections from
Washington based on 56 loci. Numbers within the boxes refer to the numbers and names on the
dendrogram in Figure 3. The Elwha River collections and the Chambers Creek Hatchery and
Bogachiel Hatchery steelhead points are named in this figure.
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Figure 5. Average length of O. mykiss of different age classes (1+ through 5+) present at
the 1994 sampling locations. Sample size (n) is listed in parentheses next to the error bars. Error
bars represent +/- 2 standard error of the mean.
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Allele frequencies for variable loci in O. mykiss collections from the
Elwha River and hatchery and wild steelhead from Washington (Refer to
Table 2 for the collection names).

APPENDIX A.
Callection
Locus 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15
MAAT-1
(M) €5 29 53 41 14 22 50 50 50 83 50 63 48 61 37

-100 1.000 0.948
-110 0.000 0.052
SAAT-1,2
{N) 65 33
100 1.000 0.978
il2 0.000 0.000
g0 0.00C 0.022
sAAT-3
IN} 65 33
100 1.000 1.000
69 0.000 0.000
g0 0.000 0.000
ADA-1
{N) 65 33
100 0.969 0.864
€9 0.008 0,106
30 0,023 0.030
ADA~-2
{N) 65 33
100 1.000 0.955
106 0.000 0.000
90 0.000 0.015
110 0.000 G.030
ADH
(M) 65 33
~100 0.985 1.000
-8 0.015 ¢.000
-50 G.000 0.000
-171 0.000 0.000
mAH-1
{N) &5 33
100 1,000 1.000
55 G.000 0.000
mAH~3
IN) €5 30
100 1.000 1.000
122 0.000 0.000
maH-4
{1} 61 30
100 0.975 1,000
115 0.000 0.000
a3 0.025 0.000
shH
(N) 64 33
160 0.969 0.8494
85 0.008 €.106
50 0.023 0.000
112 0.000 0.000

o oo

[SY-Y-a coo [

OO O

[=NeNal [y

cCooo

0.391 0.351 1.000 0,909 1.000 1.000 0.98%0 0.972 0.95%0 0.992 1.000 0.992 1.000
0.009 0.049 0.000 0.081 0.000 0.000 0.010 0.028 G.010Q 0.008 0.000 0.008 0.000

53 50 15 22 50 50 50 102 54 68 50 63 44

. 981 1.c000 1.000 1.000 0.935 0.990 0.995 1.000 0.9%6 0.982 0.930 0.996 1.000
000 0.000 0.000 0.o0c 0.000 G0.005 0.000 0.0c0 0.000 G.000 C.000 0.000 0.00o
.019 0.000 0.000 0.000 Q0.005 0.005 0.005 ¢.0o0 0.004 0.018 0.070 0.004 0.000
53 49 13 22 350 50 50 10z 54 68 46 63 18

.000 1.000 1.000 1.000 0,990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.000 G.000 0.000 0.0co G.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
.000 0.000 a.000 0.000 0.010 0.00C 0.000 ¢.000 0.000 0.000 0.000 0.000 0.000
53 S0 15 22 50 50 50 el 54 68 50 63 416

849 1.000 0.967 0.909 1.000 0.980 1.000 1.000 0.972 0.904 0.990 0.992 0.978
.085 ¢.000 0.033 0.045 G.000 0.000 0.0c0 G.000 ¢.oD9 0.015 0.000 0.000 0.000
.066 0.000 0.000 0.045 0.000 0.020 ¢.000 G.000 0.019 0.081 0.010 0,008 0.022
53 50 15 22 50 50 50 102 54 68 50 63 47

Qo0 1.000 1.000 0.977 1.000 0.980 0.950 0.995 Q.4872 0.985 0.990 0.952 1.000
.aao 0.000 0.000 0.023 0.000 0.020 0.050 0.005 0.009 0.015 0.010 0.024 0.000
.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00% 0.000 0.000 0.000 G.000
. 000 0,000 0.000 0.000 0,000 0.000 0.000 0.000 0.009 0.000 .00 Cc.024 0.000
53 50 13 22 50 50 50 102 53 68 50 82 38

.000 1.000 1.000 1.000 1.000 1.000 1.000 0.946 1.000 1.000 1.0600 1.000 1.000
. 000 0.000 0.000 G.000 0.000 0.000 0.000 0.000 0.000 0.000 G.000 0.000 0.000
.000 Q.000 Q.000 0.000C 0.000 ¢.000 0.000 0,000 0.000 0.000 G.000 0.000 0.000
.000 0.000 0.000 0.000 0.000 0.000 0.000 0.054 C.abo 0.000 0.000 0.000 0.000
53 47 11 21 49 48 50 85 54 57 50 61 33

.Q00 1.000 1.000 1.000 0.990 0.979 0.960 1.000 0.991 1.000 1.000 1.000 1.000
.Q00 0.000 0.000 0.000 0.010 0.021 0.040 0.000 G.009 0.000 0.000 0,000 0.000
53 45 12 21 50 50 50 8% 53 56 50 6l 33

.0C0 1.000 1.000 1.000 1.000 1.000 1,000 1.000 1.000 1.000 1.000 1.000 1.Q00

.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0. 000 0.000 0.000

52 41 10 13 50 50 50 87 52 55 49 60 34

.981 1.000 1.000 1.000 1.000 1.000 1.000 1.000 C¢.381 1.000 1.000 0,882 0.956
.000 0.000 0.000 0.000 0.000 0.000 Q.0o0 G.a00 0.019 0.000 0,000 0.008 0.044
-019 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.0Q00C 0.c00 0.000 0.000 0.000
53 50 13 22 50 50 50 102 54 68 50 62 42

.82 0.930 0.846 C.841 0,530 0.820 0.800 0.95% 0.833 0,453 0.740 0.871 0.881
.142 0.080 0.154 0.091 0.030 C.0BO 0.130 0.039 0.167 0.118 0.250 0.129% 0.119
L0587 0.010 0.000 0.068 0.040 0.100 0.070 0.005 0.000 0.029 0.010 0.000 0.000
.00 G.0D0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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APPENDIX A cont. Allele frequencies in coll.ections 16 thru 30
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Locus l6 17 18 19 20 21 22 23 24 25 26 27 28 2% 30
sMDH-B1, 2
(N} 50 51 64 45 44 52 51 50 50 49 50 50 50 49 49
100 0.855 0,853 0.816 C.894 0.909% 0.84¢ 0.978 0.B80 0.880 0.903 0.910 0.BOO 0.830 0,842 0.898
78 0.125 0.132 0.176 0.106 0.091 0.110 0.098 0.050 0.085 C.076 0.080 0.200 0.170 0.158 0.102
116 0.010 ¢.o00 0.000 0.000  0.000 0.000 0.00G  0.000 G.005 0.005 0.000 0.000 0,000 ¢.000 0.000
B3 0.010 0.014 0.008 0.000 0.000 0.034 0.024 0.015 0.030 0.005 0.010 0.000 0.cao 0.000 Q0.000
92 0.000 0.000 0.000 0.000 C¢.000 0.000 0.000 ¢.o00 0.000 0.000 0.000 G.000 0.000 0.000 0,000
120 0.000 0.000 0.000 0.000 0.000 0.010 ©.000 0.015 0,000 0.010 ¢.000 0.000 0.000 0.000 0.000
ME
{N) 50 51 64 45 44 52 51 49 26 a2z 50 44 44 19 49
100 1.000 1.000 1.000 1.000 1.000 1.000 0.9%80 1.000 1.000 1.G00 1.000 1.000 1.000 1.000 1,000
110 0.000  0.0€0 0.000 0.000 0.000 0.000 0.020 0.000 0.C00 0.000 0.000 0.000 0.000 0,000 0.000
a7 0.000 0.c00 Q.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 G.000
aMEP-1
(M) 50 51 64 45 44 52 51 52 53 50 50 50 50 419 49
100 1.000 0.980 1.000 ¢.978 0.977 1.¢000 1.000 0.9%0 0,962 0.980 0.380 1.000 0.980 1.000 1.000
80 0.000 0.000 ¢.000 0.000 0,000 90.000 0.000 0,000 ¢.000 0.000 0.000 0,000 0,000 0.000 0.000
36 0,000 ¢.0no 0.000 0.000 0.000 0.000 0.000 0.c00 0.000 0.000¢ 0.000 0.000 0.000 0.000 0.000
115 0.000 0.020 0.00¢ 0.022 0.023 C.000  0.c00 0.010 0,038 0.020 0,020 ¢.000 0.020 0.000 0.000
SMEP-1
(N] 50 51 64 45 44 52 51 52 53 50 19 50 50 49 49
100 0.710 0.647 0.609 0.733 0.761 0.B46 0.794 0.856 0.B30 0.B90 0,908 0.800 0.730 0.927 0.439
102 .000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000 0,000 0.000 0.000 ¢.000 0.000 0.000
98 G.000 0.000 0.000 0.000 0.000 0.000 0.o00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
83 0.290 0.353 0.391 0.267 0.239 0.154 0.206 0.144 0.151 0.110 Q.09z2 0.200 0,270 0.173 0.561
115 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0,060 0.000 0.000 0.000 0.000 0.000 ¢.000 0.000C
93 0.000 0.000 0.000 0.000 0.000 0.000 0.0c0 0.000 0.000 0.000 0.000 0.000 ¢.000 G.000 0.000
71 0.000 0.000 0.000 0.C00 C.000 0.00¢  0.000 ¢.o00 0.01% 0,000 0.000 G.000 0.000 0.000 0.000
SMEP-2
(N) 50 51 64 45 44 52 51 52 53 50 50 S0 50 419 43
100 0.990 1.000 1.000 1,000 1.000 1.000 0,851 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
B3 0.000 0.000 0,000 0.000 G.000 0.000 0.000 G.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97 0.000 0,000 0.C000 G.000 0.000 0.000 C.000 0.000 0.000 0.000 0.000 a.000 0.000 0.000 0.000
105 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0.000 0.000 G.00C
110 0.010 0,000 0.000 0.000 0.C00 0.000 0.049  0.000 0.000 0.000¢ 0.000 0.000 ¢.o00 C.000 0.000
MPI
(N} 50 51 64 45 14 52 51 52 50 50 50 50 g0 49 49
100 1.000 1.000 1.000 1.000 1.000 1.600 1.000 1.c00 1.000 1.000 1.000 1.c00 1.c000 1.000 1.000
a5 0.000 0.000 0.000  0.000 0.000 c.000 0,000 Q.000 0.000 0.0G0 0.000 0.000 0.000 0.000 0.000
104 Q.000 0.000 0.000 0.000 c.000 0.000 0,000 0.000 0.0G0 0.000 C.000 0.000 0.000 0.060 0.G00
NTP
[N} 50 50 64 43 44 51 51 52 53 50 45 416 49 49 49
100 0.220 0.160 0.164 0.256 G.307 0.304 0.284 0.337 0,434 0,330 0.256 G.163 0.163 0.204 0.173
135 0.780 0.840 0.836 0.744 0.653 0.696 0.716 0.663 0.566 0.670 0.744 0.837 0.837 0.796 o827
101 0.000 0.000 0.000 0.000 9,000 0.000 0.000  0.000 Cc.000 0.000 0.00¢ 0.000 0.000  ©.000 0.000¢
76 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.0C0 0.000 0.000 0.000 0.000
PEPA
(N) 50 51 64 45 44 52 51 L2 53 50 50 50 50 49 49
100 1.c00 Q.980 1.000 1.0G0 1.000 1.000 0.961 1.000 1.000 1.000 0.980 1.000 1.000 1.000 1.000
122 ¢.000 0.020 0,000 0.000 G.000 0.00¢ 0,039 C¢.000 0.00C 0.000 0.020 0.000 06.000 0.000 0.0co
%] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 C.000 0.000 0.000 0.000 0.000
PEFB-1
(N) 46 51 42 45 42 51 49 49 19 42 50 47 4B 40 21
100 0.891 0,971 1.000 0.8B9 0.964 0.873 0.847 0.94% 0.980 0.917 C.7%0 G.968 0.906 0.875 1.600
134 0.000 0.000 C.o00 0.000 0,000 0.010 0.031 0.000 0.000 Q.000 0.000 0.000 0,000 0.000 0.000
69 0.000 C.000 0.000 0,000 0.C00 0.000 0.000 0.000 G.000 0.000 0,000 0.000 0.000 0.000 0.000
-50 0.109 0.029 0,000 0.1112 0.036 0.118 0.122 0.051 0.020 0,083 0.210 0.032 C.094 0.125 0.000
33




100 0.990
124 0.000

81 0.019Q
sS0D-1

(N} 50
100 0.680
152 0.320

ag 0.000
148 0.000
TPI-3

(M) 39
100 0.962

94 0.038
102 0.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.000 0,000 0.000 Q.000 0.000 0.G00 0.000 0.000
0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000
51 64 45 44 52 51 52 53
0.598 0.852 0.644 0.648 0,615 0.578 0,635 0.670
0.382 0.148 0.322 0.352 0.3B85 0.402 0.356 0.330
0.000 0.000 0,033 0.000 0.000 0.020 0.010 0.000
0.020 0.000  0.000 0.000 0.000 0.000 0.000 0.000
51 64 44 44 52 51 50 48
0,961 0.969 Q.9B9 1.000 0.962 ¢.902 0.980 0,979
0.039 0.031 0.011 0.000 0.029 0.098 0.02¢  0.000
0.000 0.000 0.000 0.000 90.010 0.000 0.000 0.021
34
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